SHORT REPORT

Locus and allelic heterogeneity and phenotypic variability in Waardenburg syndrome

Puneeth H. Somashekar¹ | Katta M. Girisha¹ | Sheela Nampoothiri² | Kalpana Gowrishankar³ | Radha R. Devi⁴ | Neerja Gupta⁵ | Dhanya L. Narayanan⁶ | Anupriya Kaur⁷ | Shruti Bajaj⁸ | Sujatha Jagadeesh⁹ | Leslie E. S. Lewis¹⁰ | Shenoy Shailaja¹¹ | Anju Shukla¹

¹Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India

²Department of Pediatric Genetics, Amrita Institute of Medical Sciences and Research Centre, Cochin, India

³Department of Medical Genetics, Apollo Children's Hospitals, Chennai, India

⁴Rainbow Children Hospital and Sandor Life Sciences Pvt. Ltd., Hyderabad, India

⁵Genetics Unit, Department of Pediatrics, All India Institute of Medical Sciences, New Delhi, India

⁶Department of Medical Genetics, Nizam's Institute of Medical Sciences, Hyderabad, India

⁷Genetics Metabolic Unit, Department of Pediatrics, Advanced Pediatrics Center, PGIMER, Chandigarh, India

⁸Department of Pediatrics, Seth GS Medical College and KEM Hospital, Mumbai, India

⁹Department of Genetics, Mediscan Systems, Chennai, India

¹⁰Department of Pediatrics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India

¹¹Department of Ophthalmology, Kasturba Medical College, Manipal Academy of Higher Education, Manipal, Karnataka, India

Correspondence

Dr Anju Shukla, Department of Medical Genetics, Kasturba Medical College, Manipal Academy of Higher Education, Manipal 576104, India.

Email: anju.shukla@manipal.edu

Funding information

Science and Engineering Research Board, Government of India, Grant/Award Number: File no.: YSS/2015/002009

Peer Review

The peer review history for this article is available at https://publons.com/publon/10. 1111/cge.13468/

© 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd

Clinical Genetics. 2018;1-5.

tory and pigmentary abnormalities. We investigated a cohort of 14 families (16 subjects) either by targeted sequencing or whole-exome sequencing. Thirteen of these families were clinically diagnosed with WS and one family with isolated non-syndromic hearing loss (NSHL). Intrafamilial phenotypic variability and non-penetrance were observed in families diagnosed with WS1, WS2 and WS4 with pathogenic variants in *PAX3*, *MITF* and *EDNRB*, respectively. We observed gonosomal mosaicism for a variant in *PAX3* in an asymptomatic father of two affected siblings. For the first time, we report a biallelic pathogenic variant in *MITF* in a subject with WS2 and a biallelic variant in *EDNRB* was noted in a subject with WS2. An individual with isolated NSHL carried a pathogenic variant in *MITF*. Blended phenotype of NSHL and albinism was observed in a subject clinically diagnosed to have WS2. A phenocopy of WS1 was observed in a subject with a reported pathogenic variant in *GJB2*, known to cause isolated NSHL. These novel and infrequently reported observations exemplify the allelic and genetic heterogeneity and show phenotypic diversity of WS.

Waardenburg syndrome (WS) is a disorder of neural crest cell migration characterized by audi-

KEYWORDS

DNA copy number variation, hearing loss, heterochromia iridis, Hirschsprung disease, mosaicism, penetrance, phenotypic variability, Waardenburg syndrome

2 WILEY GENETICS

1 | INTRODUCTION

Waardenburg syndrome (WS) is a neurocristopathy.¹ It is a clinically and genetically heterogeneous disorder. The characteristic clinical features include sensorineural hearing loss (SNHL), heterochromia iridis and pigmentary abnormalities of hair and skin.² Prevalence of WS is estimated to be 1 in 42 000 and it accounts for approximately 2% to 5% of congenital hearing loss population.^{3,4}

Clinically WS is classified into four subtypes (WS1-4). WS1 (MIM #193500) and WS3 (MIM #148820) are characterized by common findings of telecanthus, sensorineural hearing loss, heterochromia iridis and hypopigmentation of skin and/or hair. In addition, WS3 has musculoskeletal abnormalities of the upper limbs. WS2 clinically differs from WS1 by the absence of telecanthus. WS4 or Shah-WS is associated with Hirschsprung disease (HD).

WS1 is caused by heterozygous variants in *PAX3* (MIM *606597). Heterozygous as well as biallelic variants in *PAX3* have been reported for WS3. Heterozygous variants in *MITF* (MIM *156845), *SOX10* (MIM *602229) cause WS2 (MIM #193510, MIM #611584). Homozygous and less frequently heterozygous variants in *EDNRB* and *EDN3* cause WS4A (MIM #277580) and WS4B (MIM #613265), respectively. Heterozygous variants in *SOX10* have been reported to cause WS4C (MIM #613266).⁵

WS is characterized by significant intra- and inter-familial phenotypic variability and reduced penetrance.⁵ We herein provide novel phenotypic and genetic insights into various subtypes of WS.

2 | MATERIALS AND METHODS

Subjects presenting with SNHL and heterochromia iridis or hypopigmentation of hair/skin with or without additional abnormalities were included in the study. Sixteen subjects from fourteen families were recruited. Genetics testing was performed by Sanger sequencing or whole-exome sequencing (WES). Copy number variations (CNV) analysis was performed using ExomeDepth algorithm. Quantitative polymerase chain reaction (qPCR) was used to validate CNV detected by ExomeDepth algorithm. Detailed methodology including molecular testing strategy is described in Appendix S1, Supporting Information. Written informed consents for the use of photographs and research findings were obtained from all participants. The study was approved by Kasturba Medical College and Kasturba Hospital Institutional Ethics Committee.

3 | RESULTS AND DISCUSSION

In the present study, we report 15 subjects clinically diagnosed with WS and one subject with congenital NSHL. We identified 11 single nucleotide variants (SNV) and one CNV in genes known to cause WS. Clinical diagnosis, pathogenic variants, in silico prediction, allele frequency and final molecular diagnosis are provided in Table 1. Detailed clinical summary findings, pedigree of the families and molecular findings of respective families are provided in Appendix S1. We

observed phenotypic variability, non-penetrance and novel molecular insights among WS families.

WS1 is caused by pathogenic variants in PAX3, which encodes for paired box transcription factor.⁵ In our cohort, we identified two pathogenic variants in PAX3 in two families. A novel missense variant, c.256A > T [p.(IIe86Phe)] in PAX3 in heterozygous state was identified in similarly affected siblings (II-1, II-2) in family 8. The variant was inherited from clinically asymptomatic father (I-1) who harbored the variant in a gonosomal mosaic state. This molecular mechanism has not been previously reported in PAX3 related WS. In family 9, proband (III-1), was found to have a novel nonsense variant, c.1230C > G [p. (Tyr410Ter)] in heterozygous state in PAX3. His father (II-6) was also heterozygous for the same variant and had telecanthus and premature graying of hair. He did not have hearing loss or heterochromia iridis suggesting variable phenotypic expressivity as reported previously for PAX3 related WS.⁵⁻⁷

WS2A is caused by pathogenic variants in *MITF*, which encodes for a basic helix-loop-helix leucine zipper (bHLH-Zip) protein.⁸ Heterozygous variants in *MITF* are known to cause WS/Tietz syndrome.⁵ In our cohort, we noted five subjects from four families with pathogenic variants in *MITF*. In family 3, a novel nonsense variant, c.979G > T [p. (Glu327Ter)] occurring in the HLH domain of MITF protein was observed in the proband III-1) and similarly affected mother (II-2). In family 10, a previously reported canonical splice site variant, c.1013 + 1G > A was observed in proband (III-1) and affected sibling (III-2). However, mother (II-2) harbored the same variant was nonpenetrant for the phenotype.

We identified a novel missense variant, c.1021C > G [p.(Arg341-Gly)] in *MITF* in homozygous state in the proband (III-1) of family 5. Clinical features in him were suggestive of WS2/Tietz syndrome. Previously, biallelic variants in *MITF* have been associated with a severe phenotype, COMMAD syndrome (MIM #617306) characterized by microphthalmia, coloboma, macrocephaly, sensorineural hearing loss, osteopetrosis, albinism and facial dysmorphism. The severity seen in these individuals was attributed to the dominant negative effect of variants present in the DNA binding domain of MITF.⁹ However, the variant in the proband (III-1) was located in bHLH domain of the MITF protein which is involved in dimerization of MITF protein.⁸

Pathogenic variants in *MITF* are also reported to cause NSHL.¹⁰ In the proband (III-8) of family 14, we identified a known pathogenic nonsense variant, c.1066C > T [p.(Arg356Ter)] in *MITF*. Targeted sequencing showed presence of this variant in heterozygous state in II-9 with unilateral hearing loss, III-5 with bilateral hearing loss and also in other unaffected members (III-7, III-6, and II-8). This variant was previously reported in a family with WS2.¹¹

Pathogenic SNVs and CNVs (small and large heterozygous deletions) in *SOX10* are known to cause both WS2E and WS4C.⁵ Two novel variants, c.1169C > G and c.415G > T in heterozygous state in *SOX10* were identified in two probands (II-2 and III-1) of family 7 and 12 diagnosed with WS2, respectively. Variants in *SOX10* have a high de novo rate as reported by recent study.¹² However, because of non-availability of parental samples segregation analysis could not be performed.

In family 6, proband (V-1) with clinical diagnosis of WS4 had a de novo heterozygous deletion of approximately 0.178 Mb spanning

Here the the the baseHere the the the the the the theHere the t								In silico pre	diction		Allele freque	ancy		
Hat Hat <th>Family ID</th> <th>Subject ID</th> <th>Gene</th> <th>Transcript</th> <th>Nucleotide change</th> <th>Protein change</th> <th>Zygosity</th> <th>Mutation Taster</th> <th>Polyphen2</th> <th>CADD</th> <th>gnomAD</th> <th>1000 genomes</th> <th>514 Indian exome (in-house)</th> <th>Final molecular diagnosis</th>	Family ID	Subject ID	Gene	Transcript	Nucleotide change	Protein change	Zygosity	Mutation Taster	Polyphen2	CADD	gnomAD	1000 genomes	514 Indian exome (in-house)	Final molecular diagnosis
9 111 7x3 NM_181459.3 c1230C > G Introduct Het D NA 246 0 0 0 Word 11 MTF NM_1981592 c7976 > T p(ciu32Trei) Het D NA 9 0 0 0 0 Word 11 MTF NM_1981592 c1021C G p(ciu32Trei) Het D NA 94 0 0 0 0 WSA 11 MTF NM_1981592 c103541G p(ciu33Trei) Het D NA 94 0 0 0 WSA 11 UL SX10 NM_1981592 c1066511 p(ciu33Trei) Het D NA 97 0 0 0 0 WSA 11 EV NM_1981592 c1066511 p(ciu33Trei) Het D NA 0 0 0 0 0 0 0 0 0 0 0 0	F8	-1 -2	PAX3	NM_181459.3	c.256A > T	p.(Ile86Phe)	Het	۵	Δ	32	0	ο	0	WS1
11 MIF M.1981592 C976.5 T p.(Gu.227Te) Het D Na 44 0 0 0 W2A 11-1 MIF M.1981592 c1021C 5G p.(Gu.227Te) Het D 34 0 0 0 W2A 11-1 WIF M.1981592 c1021C 5G p.(Gu.227Te) Het D 34 0 0 0 W2A 11-2 WIF M.1981592 c103*1G 5 p.(Au3567e) Het D NA 41 0 0 0 0 0 W2A 11-2 SOX10 M.1981592 c10567 5 p.(Au3957) Het D NA 41 0 0 0 0 0 0 W2A 11-1 SOX10 M.0005913 c11697 5 p.(Au39576) Het D NA NA 0 0 0 0 0 0 0 0 0 0 0 0 0 <td< td=""><td>F9</td><td>III-1</td><td>PAX3</td><td>NM_181459.3</td><td>c.1230C > G</td><td>p.(Tyr410Ter)</td><td>Het</td><td>۵</td><td>NA</td><td>24.6</td><td>0</td><td>0</td><td>0</td><td>WS1</td></td<>	F9	III-1	PAX3	NM_181459.3	c.1230C > G	p.(Tyr410Ter)	Het	۵	NA	24.6	0	0	0	WS1
11 MIF NM.1981592 c1021 C s p(m33150) Hom D </td <td>F3</td> <td>III-1</td> <td>MITF</td> <td>NM_198159.2</td> <td>с.979G > Т</td> <td>p.(Glu327Ter)</td> <td>Het</td> <td>۵</td> <td>NA</td> <td>44</td> <td>0</td> <td>0</td> <td>0</td> <td>WS2A</td>	F3	III-1	MITF	NM_198159.2	с.979G > Т	p.(Glu327Ter)	Het	۵	NA	44	0	0	0	WS2A
¹¹⁰ ¹¹¹ MrF Nu.1981592 c1013+1G> Let Let N 274 0 0 0 0 WrS 114 116 MrF Nu.1981592 c103+1G> p(ay355616) Het D NA 41 0 0 0 MrS WrS 114 112 S0X10 NU.1981592 c1056C>T p(ay355616) Het D NA 41 0 0 0 0 MrS 114 112 S0X10 NU.0059413 c1169C>G p(ay13979) Het D NA 40 0 0 0 0 MrS 114 S0X10 NU.002013971 c3165C>A p(ay13979) Het NA NA 0	F5	11-1	MITF	NM_198159.2	c.1021C > G	p.(Arg341Gly)	Hom	Δ	Ω	34	0	0	0	WS2A
14 II-8 Miff Nu_J981592 C1066C>T DAg356Te() Het D Nd 90 D Mifferenta 17 II-2 SCX10 NM_0069413 C1169C>G p(G1330C)G Het D Nd Q Q Q Wifferenta 17 II-1 SCX10 NM_0069413 C1169C>G p(G1330C)G Het D Nd Q Q Q Q Q Wifferenta 17 II-1 SCX10 NM_0069413 C1169C>G p(G1330C)G Het D Nd Q Q Q Q Q Wifferena 16 V-1 SCX10 NM_0069413 C4156C>G p(G1335C)G Het D Nd Q <td>F10</td> <td>III-1 III-2</td> <td>MITF</td> <td>NM_198159.2</td> <td>c.1013 + 1G > A</td> <td>ı</td> <td>Het</td> <td>۵</td> <td>NA</td> <td>27.4</td> <td>0</td> <td>0</td> <td>0</td> <td>WS2A</td>	F10	III-1 III-2	MITF	NM_198159.2	c.1013 + 1G > A	ı	Het	۵	NA	27.4	0	0	0	WS2A
7 1-2 50X10 NM_00641.3 c1169C > G p(5er390Ter) Het D NA 40 0 0 0 WS2E 112 111 50X10 NM_00641.3 c11697.4 p(5y139Cy) Het D 33 0 0 0 WS2E 143 V11 50X10 - CN - Het N N N 0 0 0 0 WS2E 143 111 EDNR NM_00120137.1 c37C > A p(Cys107tr) Het N N N N 0 0 0 0 WS2E 143 11-1 EDNR NM_00120137.1 c573C > A p(Cys117Pie) Hon D N 35 0 0 0 0 WS4E 141 11-3 EDN3 NM_207032.2 c332G > T p(Cys117Pie) Hon D N 36 0 0 0 0 0 0 0 <	F14	III-8	MITF	NM_198159.2	c.1066C > T	p.(Arg356Ter)	Het	Ω	AN	41	0	0	0	HL due to <i>MITF</i> variant
11 50X10 NM_0069413 c415G > T p(G V139Cy) Het D D 33 0 0 0 W2E 16 V-1 50X10 - CW - Het NA NA 0 0 0 0 W2E 16 H-1 50X10 - CW - Het NA NA 0 0 0 0 0 W24 17 EDNB NM_001201397.1 c377c > A p(G Y255s) Het D NA 0 0 0 0 0 W24 18 II-1 EDNB NM_001201397.1 c573c > A p(G Y255s) Hot D D 25 0.00004 0 0 0 W54A 17 II-3 EDN3 M_2070322 c332G > T p(Trp24Tet) Hot D NA 36 0.0004 0 0 0 0 0 0 0 10 10 10	F7	II-2	SOX10	NM_006941.3	c.1169C > G	p.(Ser390Ter)	Het	۵	NA	40	0	0	0	WS2E
F6 V-1 50X10 - CNV - Het NA NA NA 0 0 0 W34C F4 II-1 EDNR NM_001201397.1 c37C × A p(Cys109Te) Het D NA 0 0 0 0 W34C F13 II-1 EDNR NM_001201397.1 c57G × A p(Gy255er) Hon D NA 35 0 0 0 0 W34C F13 II-3 EDN3 NM_001201397.1 c57G × A p(Gy215Fer) Hon D NA 35 0 0 0 0 0 W34C F1 II-3 EDN3 NM_207032.2 c332G × T p(Tr24Ter) Hon D NA 36 0	F12	11-1	SOX10	NM_006941.3	c.415G > T	p.(Gly139Cys)	Het	۵	D	33	0	0	0	WS2E
F4 I1-1 EDNRB NM_001201397.1 C.327C > A p.(Cys109Ter) Het D NA 35 0 0 0 W54A F13 II-1 EDNRB NM_001201397.1 c.573C > A p.(Cys107Er) Hom D D 25 0.00004 0 0 W54A F1 II-3 EDN3 NM_207032.2 c.332G > T p.(Cys111Phe) Hom D 25 0.00004 0 0 W54B F2 IV-1 GJB2 NM_207032.2 c.332G > T p.(Trp24Ter) Hom D NA 36 0.00004 0 0 0 W54B F2 IV-1 GJB2 NM_00404.5 c.71G > A p.(Trp24Ter) Hom D NA 36 0.000508 0.01911 DFNB1A F11 III-2 ADGRV1 NM_003724 c.575C > A p.(Trp24Ter) Hom D NA 35 0.000508 0.01911 DFNB1A F11 III-2 <td>F6</td> <td>V-1</td> <td>SOX10</td> <td>ı</td> <td>CNV</td> <td>ı</td> <td>Het</td> <td>NA</td> <td>NA</td> <td>NA</td> <td>0</td> <td>0</td> <td>0</td> <td>WS4C</td>	F6	V-1	SOX10	ı	CNV	ı	Het	NA	NA	NA	0	0	0	WS4C
F13 III-1 EDNR NM_001201397.1 c.673G > A p.(Gy225se) Hom D D 25 0.00004 0 0 W54A F1 II-3 EDN3 NM_207032.2 c.332G > T p.(Cy11Phe) Hom D D 31 0 0 0 W54A F2 IV-1 GJB2 NM_00404.5 c.71G > A p.(Trp24Ter) Hom D NA 36 0.000508 0.0191 DFNB1A F11 III-2 ADGRV1 NM_032119.3 c.1608C > G p.(Trp24Ter) Hom D NA 36 0.000508 0.0191 DFNB1A F11 III-2 ADGRV1 NM_00372.4 c.1608C > G p.(Trp54Ter) Hom D NA 35 0 0 0 0 US42C F11 III-2 ADGRV1 NM_00372.4 c.1608C > G p.(Trp54Ter) Hom D NA 35 0.0237 0.0345 P.GC40C US42C V US41	F4	1-1	EDNRB	NM_001201397.1	c.327C > A	p.(Cys109Ter)	Het	D	NA	35	0	0	0	WS4A
F1 II-3 EDN3 NM_207032.2 c.332G > T p.(Cys117he) Hom D D 31 0 0 0 WS4B F2 IV-1 GJB2 NM_00404.5 c.71G > A p.(Trp24Ter) Hom D NA 36 0.000608 0.0191 DFNB1A F11 III-2 ADGRV1 NM_032119.3 c.1608C > G p.(Trp34Ter) Hom D NA 35 0 0 0 0 USH2C F11 III-2 ADGRV1 NM_00372.4 c.575C > A p.(Ser192Tyr) Hom D NA 35 0 0 0 0 USH2C F11 III-2 ADGRV1 NM_000372.4 c.575C > A p.(Ser192Tyr) Hom D 25 0.123 0.0865 Reduced F11 NA N D D 25 0.2545 0.123 0.0865 tyrosinase	F13	111-1	EDNRB	NM_001201397.1	c.673G > A	p.(Gly225Ser)	Hom	D	D	25	0.000004	0	0	WS4A
F2 IV-1 G/B2 NM_00404.5 c.71G > A p.(Trp24Ter) Hom D NA 36 0.000608 0.00399 0.0191 DFNB1A F11 III-2 ADGRV1 NM_032119.3 c.1608C > G p.(Trp34Ter) Hom D NA 35 0 0 0 USH2C F11 III-2 ADGRV1 NM_032119.3 c.1608C > G p.(Try536Ter) Hom D NA 35 0 0 0 USH2C TYR NM_000372.4 c.575C > A p.(Ser192Tyr) Hom P D 25 0.123 0.0865 Reduced tyrosinase ADGRV1 NM_000372.4 c.575C > A p.(Ser192Tyr) Hom P D 25 0.123 0.0865 tyrosinase ADGRV1 NM_000372.4 c.575C > A p.(Ser192Tyr) Hom P D 25 0.123 0.0865 tyrosinase	F1	II-3	EDN3	NM_207032.2	с.332G > Т	p.(Cys111Phe)	Hom	۵	۵	31	0	0	0	WS4B
F11 III-2 ADGRV1 NM_032119.3 c.1608C > G p.(Tyr536Ter) Hom D NA 35 0 0 0 USH2C TYR NM_000372.4 c.575C > A p.(Ser192Tyr) Hom P D 25 0.123 0.0865 Reduced tyrosinase tyrosinase total P D 25 0.2545 0.123 0.0865 Reduced tyrosinase tyrosinase total P D 25 0.2545 0.123 0.0865 Reduced tyrosinase tyrosinase total P D 25 0.2545 0.123 0.0865 tyrosinase	F2	IV-1	GJB2	NM_004004.5	c.71G > A	p.(Trp24Ter)	Hom	D	AN	36	0.000608	0.000399	0.0191	DFNB1A
TYR NM_000372.4 c.575C > A p.(Ser192Tyr) Hom P D 25 0.2545 0.123 0.0865 Reduced tyrosinase tyrosinase tyrosinase	F11	III-2	ADGRV1	NM_032119.3	c.1608C > G	p.(Tyr536Ter)	Hom	۵	NA	35	0	0	0	USH2C
			TYR	NM_000372.4	c.575C > A	p.(Ser192Tyr)	Hom	٩	۵	25	0.2545	0.123	0.0865	Reduced tyrosinase activity

TABLE 1 Pathogenic variants, in silico predictions, allele frequency and final molecular diagnosis observed in the cohort

11 genes and 1 pseudogene (H1F0, GCAT, GALR3, ANKRD54, MIR658, MIR659, EIF3L, MICALL1, C22orf23, POLR2F, SOX10 and RNU6-900P). None of the above mentioned genes, except SOX10 are known to contribute to the phenotype. Previous studies have shown CNVs can range from single exon deletion of SOX10 to 6 Mb deletion around the SOX10 locus causing WS2E or WS4C.^{13,14}

WS4A and WS4B are caused by pathogenic variants in *EDNRB* and *EDN3*, respectively. *EDNRB* and *EDN3* encode for endothelin receptor type B and its ligand endothelin, respectively. In Family 1, proband (II-3) was diagnosed with WS4. We identified a novel missense variant, c.332G > T [p.(Cys111Phe)] in homozygous state in *EDN3*. The variant occurs within the endothelin domain of the EDN3 protein, which is essential for binding to its receptor, EDNRB.

In family 4, a novel variant, c.327C > A [p.(Cys109Ter)] in EDNRB was observed in heterozygous state in proband (II-1) and father (I-1). Proband showed features suggestive of WS1 including hearing loss, heterochromia irides and telecanthus (Figure S4) without HD. Father was clinically asymptomatic and non-penetrant. Another novel variant, c.673G > A [p.(Gly225Ser)] in EDNRB was observed in proband (III-1) of family 13 in homozygous state. He had features of WS2 without any evidence of HD. His asymptomatic parents were heterozygous carriers for the variant. Incomplete penetrance has been observed among few families with heterozygous variants in EDNRB.¹⁵ Homozygous variants in EDNRB have been reported with WS1.¹⁶ Heterozygous variants in EDNRB have been described in individuals with WS without HD and also with isolated HD.^{15,17} Although variants in EDNRB have been associated with WS4, these findings further validate that both heterozygous as well as homozygous variants in EDNRB can cause other subtypes of WS.

In our cohort, two individuals fulfilling diagnostic criteria for WS did not have any pathogenic variants in genes known to cause WS. In family 11, proband (III-2) was noted to have a novel pathogenic variant, c.1608C > G [p.(Tyr536Ter)] in homozygous state in ADGRV1 (MIM *602851). ADGRV1 is known to cause Usher syndrome 2C (MIM #605472). It is clinically characterized by SNHL and progressive retinitis pigmentosa. ADGRV1 variants are also infrequently associated with NSHL according to Deafness Variation Database. Our subject had SNHL, heterochromia iridis and premature graving of hair and albinotic fundus without any evidence of retinitis pigmentosa. In addition, he had a missense variant c.575C > A (p.Ser192Tyr) in homozygous state in TYR which is associated with reduced tyrosinase enzyme activity. This variant has a minor allele frequency of 0.2545 in gnomAD Exomes. However, Indian Genome Variation Consortium genotyped this variant in 1871 normal healthy Indians and found this variant to be under represented among Dravidians as compared to Indo-Europeans.¹⁸ It has also been reported as cause of oculocutaneous albinism type 1 in a family with three affected siblings.¹⁹ Therefore, this variant is the probably cause of hypopigmentation noted in him.

In Family 2, proband (IV-1) had a known pathogenic variant, c.71G > A [p.(Trp24Ter)] in homozygous state in *GJB2* (MIM *121011).²⁰ Biallelic pathogenic variants in *GJB2* causes non-syndromic hearing loss, DFNB1A (MIM #220290). This variant explains only the hearing loss phenotype observed in the proband but

not the heterochromia iridis, telecanthus and synophrys (Figure S2) seen in her.

To summarize, our cohort demonstrates intra- and inter-familial phenotypic variability and non-penetrance in families with WS. We report gonosomal mosaicism in WS1 and biallelic variants in *MITF* and *EDNRB* causing WS2. We observed NSHL because of a pathogenic variant in *MITF*. Blended phenotype of NSHL and albinism mimicked WS. A phenocopy of WS1 was seen in a subject with a pathogenic variant in *GJB2*. With these, our study adds to the spectrum of molecular and phenotypic findings and further understanding of WS.

ACKNOWLEDGEMENT

We are grateful to subjects and their families for participating in the present study. This study was funded by Science and Engineering Research Board, Government of India (file no.: YSS/2015/002009).

CONFLICTS OF INTEREST

Authors declare no conflict of interest.

ORCID

Katta M. Girisha b https://orcid.org/0000-0002-0139-8239 Neerja Gupta b https://orcid.org/0000-0002-7108-1974 Anju Shukla b https://orcid.org/0000-0003-2471-4094

REFERENCES

- Hou L, Pavan WJ. Transcriptional and signaling regulation in neural crest stem cell-derived melanocyte development: do all roads lead to Mitf? *Cell Res.* 2008;18(12):1163-1176.
- Song J, Feng Y, Acke FR, Coucke P, Vleminckx K, Dhooge IJ. Hearing loss in Waardenburg syndrome: a systematic review. *Clin Genet*. 2016; 89(4):416-425.
- Read AP, Newton VE. Waardenburg syndrome. J Med Genet. 1997; 34(8):656-665.
- Nayak CS, Isaacson G. Worldwide distribution of Waardenburg syndrome. Ann Otol Rhinol Laryngol. 2003;112(9 Pt 1):817-820.
- Pingault V, Ente D, Dastot-Le Moal F, et al. Review and update of mutations causing Waardenburg syndrome. *Hum Mutat*. 2010;31(4): 391-406.
- Hazan F, Ozturk AT, Adibelli H, Unal N, Tukun A. A novel missense mutation of the paired box 3 gene in a Turkish family with Waardenburg syndrome type 1. *Mol Vis*. 2013;19:196-202.
- Trabelsi M, Nouira M, Maazoul F, et al. Novel PAX3 mutations causing Waardenburg syndrome type 1 in Tunisian patients. *Int J Pediatr Otorhinolaryngol.* 2017;103:14-19.
- Steingrimsson E, Copeland NG, Jenkins NA. Melanocytes and the microphthalmia transcription factor network. *Annu Rev Genet*. 2004; 38:365-411.
- 9. George A, Zand DJ, Hufnagel RB, et al. Biallelic mutations in MITF cause Coloboma, Osteopetrosis, Microphthalmia, macrocephaly, albinism, and deafness. *Am J Hum Genet*. 2016;99(6):1388-1394.
- Bademci G, Cengiz FB, Foster Ii J, et al. Variations in multiple syndromic deafness genes mimic non-syndromic hearing loss. *Sci Rep.* 2016; 6:31622.
- **11.** Yang S, Dai P, Liu X, et al. Genetic and phenotypic heterogeneity in Chinese patients with Waardenburg syndrome type II. *PLoS One*. 2013;8(10):e77149.
- Sun L, Li X, Shi J, et al. Molecular etiology and genotype-phenotype correlation of Chinese Han deaf patients with type I and type II Waardenburg syndrome. *Sci Rep.* 2016;6:35498.

- **13.** Bondurand N, Dastot-Le Moal F, Stanchina L, et al. Deletions at the SOX10 gene locus cause Waardenburg syndrome types 2 and 4. *Am J Hum Genet*. 2007;81(6):1169-1185.
- 14. Li H, Jin P, Hao Q, Zhu W, Chen X, Wang P. Identification of a novel De novo heterozygous deletion in the SOX10 gene in Waardenburg syndrome type II using next-generation sequencing. *Genet Test Mol Biomarkers*. 2017;21(11):681-685.
- Issa S, Bondurand N, Faubert E, et al. EDNRB mutations cause Waardenburg syndrome type II in the heterozygous state. *Hum Mutat*. 2017;38(5):581-593.
- Morimoto N, Mutai H, Namba K, Kaneko H, Kosaki R, Matsunaga T. Homozygous EDNRB mutation in a patient with Waardenburg syndrome type 1. Auris Nasus Larynx. 2018;45(2):222-226.
- Amiel J, Attié T, Jan D, et al. Heterozygous endothelin receptor B (EDNRB) mutations in isolated Hirschsprung disease. *Hum Mol Genet*. 1996;5(3):355-357.
- Chaki M, Sengupta M, Mondal M, et al. Molecular and functional studies of tyrosinase variants among Indian oculocutaneous albinism type 1 patients. J Invest Dermatol. 2011;131(1):260-262.
- 19. Shah SA, Raheem N, Daud S, et al. Mutational spectrum of the TYR and SLC45A2 genes in Pakistani families with

oculocutaneous albinism, and potential founder effect of missense substitution (p.Arg77Gln) of tyrosinase. *Clin Exp Dermatol.* 2015:40(7):774-780.

WILEY

20. Maheshwari M, Vijaya R, Ghosh M, Shastri S, Kabra M, Menon PSN. Screening of families with autosomal recessive non-syndromic hearing impairment (ARNSHI) for mutations in GJB2 gene: Indian scenario. *Am J Med Genet A*. 2003;120a(2):180-184.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of the article.

How to cite this article: Somashekar PH, Girisha KM, Nampoothiri S, et al. Locus and allelic heterogeneity and phenotypic variability in Waardenburg syndrome. *Clin Genet*. 2018;1–5. https://doi.org/10.1111/cge.13468

5